
Rose’s Programming in Python

Rose Enos

2024

Adapted from the following sources:

• The Python 3.12.1 documentation by the Python Software Foundation

• Notes by Professor Alex Thornton at the University of California, Irvine
for I&C SCI 32A and I&C SCI 33

• Lectures by Professor Mustafa Ibrahim at the University of California,
Irvine for I&C SCI 32

• Lectures by Cora Schallock at the University of California, Irvine for I&C
SCI 32

Contents

1 Program Structures 3
1.1 The Interpreter . 3
1.2 Control Structures . 3
1.3 Functions . 4
1.4 Functional Programming . 4
1.5 Decorators . 6
1.6 Context Managers . 6
1.7 Exceptions . 7
1.8 Testing . 7

2 Object Oriented Programming 9
2.1 Namespaces . 9
2.2 Classes . 9
2.3 Inheritance . 10
2.4 Class Design . 11
2.5 Abstract Base Classes . 12

1

3 Data Structures 13
3.1 The Python Data Model . 13
3.2 Types . 15
3.3 Booleans . 15
3.4 Numbers . 16
3.5 Strings . 17
3.6 Iterables . 17
3.7 Comprehensions . 18
3.8 Databases . 19
3.9 SQLite . 20

4 Algorithms 22
4.1 Iteration . 22
4.2 Recursion . 23
4.3 Searching . 24

5 Input and Output 25
5.1 Files . 25
5.2 CSV Files . 25
5.3 PathLib and Glob . 26
5.4 Sockets . 26
5.5 Tkinter . 28
5.6 Application Programming Interface 30

2

1 Program Structures

1.1 The Interpreter

After installation, Python can be executed by the shell command

python option

with option

• None or -: enter interactive mode; sys.argv[0]=="" or sys.argv[0]=="-".

• script: execute a script; sys.argv[0]==script.

• -c command: execute a command; sys.argv[0]=="-c".

• -m module: execute a module; sys.argv[0]==module.

• -i module: execute a module and enter interactive mode; sys.argv[0]==module.

Interactive mode accepts commands for immediate interpretation. If the
command is or returns a statement, the statement is printed and stored in the
str _. Extraneous arguments are stored as str in the list sys.argv.

A comment is uninterpreted text delimited by # and a new line anywhere
outside of a str. The encoding of a file can be set at the first line:

-*- coding: encoding -*-

where encoding is a codec.

1.2 Control Structures

Any number of args can be printed

print(args, end=string)

separated by spaces, where string ends the output and defaults to a new line.
A while loop

while condition:

commands

executes commands while condition is true. A control structure controls what
is executed. A common control structure is the if statement if <condition>:.
The if statement evaluates the truthiness of the condition expression. Truthi-
ness is defined per type.

object_1 is object_2 returns as a bool whether object_1 and object_2

are the same object.

3

1.3 Functions

A function def <function>([params]): is a defined set of code that can
be called function(args) to execute. With multiple parameters, arguments
can be passed in order (positional arguments) or by keyword name = value

(keyword arguments). Keyword arguments must appear after all positional
arguments.

def function(param = value): defines a default argument. Default ar-
guments must appear after all non-defaulted parameters. Default arguments are
stored in the __defaults__ attribute of the function.

A tuple-packing parameter is a *parameter that packs any number of
arguments into a tuple. At most one tuple-packing parameter can be defined.
The tuple-packing parameter defaults to an empty tuple and cannot be manually
defaulted.

A keyword-only parameter is a parameter that appears after * in the
parameters and that can only be filled by a keyword argument. Parameters
that appear after a tuple-packing parameter are also keyword-only parameters.

A positional-only parameter is a parameter that appears before / in the
parameters and that can only be filled by a positional argument. The keyword-
only marker must appear after the positional-only marker if both are present.

A dictionary-packing parameter is a parameter **kwargs that packs
any number of keyword arguments that do not fill other parameters into a
dictionary. At most one dictionary-packing parameter can be defined and it
must be the last parameter. The dictionary-packing parameter defaults to an
empty dictionary and cannot be manually defaulted.

Optional type annotations indicate the intended types of variables related
to functions:

• <param>: <type> the intended argument type.

• def <function>([params]) -> <type>: the intended return type.

The typing library from typing import <Type> allows type annotations for
types with the same syntax like List[...] and Tuple[...] and general types
like Iterable[...].

Abstraction is the compartmentalization of code into self-descriptive func-
tions. Abstraction allows easier maintenance based on intended functionality.

1.4 Functional Programming

Functional programming is an alternative to object-oriented programming.

• Functions are the main organizational blocks.

• Functions are pure, meaning their result is uniquely determined by their
arguments and they have no side effects.

• Functions are first class, meaning they are data types.

4

The benefits of functional programming are

• Clarity: functions are independent except where explicitly stated.

• Testability: functions can be tested independently.

• Provability: mathematics can prove functionality.

• Parallelizability: functions can execute simultaneously where independent.

A lambda expression returns an unnamed anonymous function lambda param1, ..., paramn: returnvalue.
A higher-order function takes a function as a parameter or returns a func-
tion. A higher-order function can return the composition of two argument
functions, or a pipeline of many argument functions. A partial call provides
fewer than all required arguments to a function. A higher-order function can
return a partial function that returns a value when the remaining arguments
are passed to it.

An object is callable if it can be called like a function. callable(object)
returns whether an object is callable. Presence of __call__(self, param1, ..., paramn)

determines whether an object is callable.
Common higher-order functions are

• map(function, iter1, ..., itern) returns function value on respec-
tive elements of each iterable, with the number of iterables the number of
function parameters.

• filter(boolfunction, iter) returns values for which the function is
true.

• functools.reduce(function2param, iter, [initial]) returns a value
resulting from a function on each element of an iterable (nonempty if the
initial value is not present), with the first argument the value resulting
from all previous elements (and the initial value, if present) and the sec-
ond argument the current element.

• functools.partial(function, arg1, ..., argp) returns a partial func-
tion resulting from passing arguments to the original function.

The operator module gives operators as functions

• operator.add

• operator.mul

• operator.truth

5

1.5 Decorators

A decorator is a callable object with a callable parameter that returns a callable
object. Writing @decorator right above a callable object definition transforms
the object into its return value by the decorator. Multiple decorators are ap-
plied in reverse order. To pass arguments to a decorator, we can make the
decorator a call to a function that accepts parameters and returns a decorator.
getattr(object, name) returns, and setattr(object, name, value) sets,
respectively, the attribute of an object from its name as a string.

A bound method is a method whose self parameter is predetermined. A
function is a descriptor and is a bound method if obtained as an attribute of
an object. A decorator can be used on a class method by having the decora-
tor return a callable descriptor whose value is the bound decorated method if
obtained as an attribute.

Caching is storing data for reuse. Caching function results is memoiza-
tion. The functools module provides the decorator functools.cache that
implements caching for a function if all the arguments are hashable and the
function is pure. This trades off memory complexity for time complexity, and
is beneficial when dictionary lookup time is less than the function time and
when the dictionary is not prohibitively large. functools.lru_cache imple-
ments functools.cache and removes the least-recently used cached value if a
size boundary is hit.

functools.total_ordering decorates a class that has __eq__ and __lt__

and implements __ne__, __ge__, __le__, and __gt__ automatically.

1.6 Context Managers

Automatic wrap-up is automatic execution after a certain operation. The
finally block is automatic wrap-up to the try block.

A context manager is an object that automates operations based on con-
text. File, socket, the return from urllib.request.urlopen(url), and the
return from self.assertRaises(error) are context managers.

with is a syntactic sugar because it makes programming easier. In with context_expression as name,
context_expression returns the context manager and stores it optionally in
name. The context manager is notified of exit from the with block. A context
expression that does not return a context manager results in TypeError.

The contextlib module in the standard library provides context managers.
with contextlib.redirect_stdout(io.StringIO()) as output gives a con-
text manager output where print(string) sets the value of output instead of
printing to the shell and output.getvalue() returns the value.

A protocol determines how the attributes of a class or object are treated.
The initialization protocol passes arguments in an object constructor to __init__.
The context management protocol, or context manager protocol, determines
how to enter and exit a with block:

• __enter__(self) is called as the with block is entered and returns the
context manager, usually self.

6

• __exit__(self, exc_type, exc_value, exc_traceback) is called as the
with block is exited. If the block is exited normally, the last three pa-
rameters are None. If an exception is raised, they are the exception type,
error message, and traceback, respectively, and returning True suppresses
the exception.

1.7 Exceptions

An exception is an object of type Exception that is raised, or thrown, when
an exception condition is met. An exception is identified by its name, describing
why it was raised, and trace, describing where it was raised. A program raises
AssertionError if an assertion fails, TypeError if an operation fails because
of the types of its inputs, and ValueError if an operation fails because of the
values of its inputs.

An exception can be raised manually raise <exception>. Exception han-
dling, or exception catching, is the functionality of a control structure with
raised errors as its conditions. A try block try: executes code until an excep-
tion is raised. An except block except <exception> as e: executes code
if a specific exception is raised in the try block and stores the exception in e.
Exceptions are handled by except blocks in vertical order. An optional finally
block finally: executes code after the executed try blocks, if any. A custom
exception

class <exception>(Exception):

pass

can also be manually raised. The pass statement pass ends a block.

1.8 Testing

Unit testing is the evaluation of an individual unit of a program, such as
a function or group of related functions. Unit testing is performed with the
structure of the unit in mind. White box testing is the evaluation of a full
program with the structure of the program in mind. Black box testing is the
evaluation of a full program without knowing how it functions.

A normal case, or happy path, is a set of tested conditions that simulate
the standard intended functionality of the program. An error case is a set of
tested conditions that are expected to raise an error. A boundary case, or
edge case, is a set of tested conditions that lie on the boundary of standard
functionality and error.

The unit test library import unittest automates unit testing. Tests
execute in alphabetical order. The number of passes, number of failures, and
run time are displayed after the tests complete.

The main test function main() begins testing all classes in the program
that are extensions of TestCase. The setup method def setUp(self): is
called before each test. The teardown method def tearDown(self): is
called after each test.

7

Tests are methods with names prefixed by test_. Tests pass or fail by
assertion statements which are methods of self. Some assertion statements
are as follows:

• assert <statement> the statement is true.

• assertEqual(<value 1>, <value 2>) the two values are equal.

• with assertRaises(<exception>): the code in the block raises the ex-
ception.

fail(message) fails the test and prints a message.

8

2 Object Oriented Programming

2.1 Namespaces

A module is a .py file. The attributes of a module are stored in __dict__.
The attributes of an object are stored in object.__dict__. The namespace
of a component is the set of names defined in the component.

The scope of a namespace is the largest component on which it is recognized.
The local scope contains names defined within a block. The global scope
global <declaration> contains names defined within a program. A global
variable can be accessed in a lower scope global <variable>. The standard
library contains names defined by Python. NameError is raised when a specified
name is not defined.

The namespace of a module can be imported into another module [from

<module>] import <module/name> [as <alias>]. To prevent code in a mod-
ule from running when it is imported, stray code should be placed in the con-
trol structure if __name__ == ’__main__’: which executes only if the current
module is the main module being executed by the program.

Visibility determines what parts of a module should be visible in which
scopes. An externally available name is one that is imported from an outside
module. An internally available name is one that is defined in the current
module. A public name is one that can be imported to an outside module. A
private name __<name> is one that should not be used in outside modules.

Dunders are internal Python variables delimited by double underlines.
dir() returns the list of dunders.

A package is a directory that contains modules.

• import package.module imports a module from a package

• import package imports the package as specified by __init__.py:

from .module import name

2.2 Classes

Object-oriented programming, or OOP, is the practice of programming
with objects, which are structural models of real objects, instantiated from
classes, which define the models. OOP allows more abstraction and reusability
than procedural programming.

A class class <class>: defines fields, or instance variables, which are
variables of an object, and methods, which are functions of an object. The
__dict__ of a class is a mappingproxy, which is similar to a dict but does not
support assignment. __dict__ includes

• __module__ the name of the module in which the class is defined

• __doc__ the docstring

9

• __annotations__ type annotations on the attributes of the class

• __dict__

• __weakref__

Fields are attributes of the class and are not automatically attributes of objects.
A class describes objects that share behavior. A public interface of a class

is a set of its methods and their natural-language descriptions. Multiple classes
can be defined in a single module, and they are public.

A Unified Modeling Language Diagram, or UML Diagram, describes
a class as a vertically tripartitioned rectangle with the name in the top box, the
fields in the middle box, and the methods in the bottom box.

A method is called by <object>.<method>([params]) or class.method(object, args).
Methods are attributes of classes, not of objects. Methods are defined with the
first parameter self which represents the current object but is not passed in
a method call. Instance variables are private. A getter, or accessor, is a
method that returns an instance variable. A setter, or mutator, is a method
that modifies an instance variable.

The constructor, or initializer, def __init__(self, [params]): is a
special method that initializes the instance variables when an object is cre-
ated. The constructor is unique to a class. The special methods equal and
def __eq__(self, <compared object>): and less than def __lt__(self,

<compared object>): overload their respective operators.
A static method is marked by @staticmethod on the preceding line and

does not include the self parameter. Static methods are called on the class,
not the object. A class method is marked by @classmethod on the preceding
line and takes the cls parameter instead of the self parameter. A factory
method is a class method that creates an object of type cls.

2.3 Inheritance

Inheritance places the attributes of a base class, or superclass or super-
type, under a derived class, or subclass or subtype. In single inheritance,
a derived class has one base class. A class is automatically a derived class of the
object class. The object class is the only class that is not a derived class. The
base classes of a derived class are stored in the tuple DerivedClass.__bases__.
If an attribute is not implemented in a class, a call defers to the attribute of the
base class. The Liskov substitution principle states that an object should
be able to substitute for objects of any of its base classes.

The base class can be specified by class DerivedClass(BaseClass). type(a) is C

returns whether an object is of a specific class. isinstance(a, C) returns
whether an object is of a specific class or any of its base classes.

super(type=type(self), obj_or_type=None) is an object that represents
an object of a base class. The super object can be a parent or sibling class of
type. The object searches the MRO of the MRO to be searched. The super
object begins searching for attributes from the class right after type.

10

Inmultiple inheritance, a derived class has multiple base classes class DerivedClass(BaseClass1, ..., BaseClassn).
If an attribute is not implemented in the derived class, the call will defer to
the attributes of the base classes in the order they appear in the class def-
inition, which is stored in the method resolution order, or MRO, tuple
DerivedClass.__mro__ whose first entry is the derived class itself. A lin-
earization is an MRO the follows these rules:

• If X is a base class of Y, then Y appears before X in the MRO.

• If X and Y are base classes and X is listed before Y in the class definition,
then X appears before Y in the MRO.

Python linearizes the MRO by the C3 algorithm. Class definition fails if two
base classes have the same base classes in different order.

A mixin class is a class that is inherited from and that provides flexible
attributes that do not depend on the inheriting class. Mixin classes are usually
listed before any base classes in the class definition.

2.4 Class Design

Class design is driven by the intended functionality and prohibitions. We can
start with the simplest thing that could possibly work. Then we modify func-
tionality to meet the intention. If the solution is not readable in its current
form, we should change it to a more readable form.

__getattr__(self, name) returns the value of an attribute that is not de-
fined as part of the object, class, or base classes. __setattr__(self, name, value)

determines how attribute assignment works. __delattr__(self, name) deter-
mines how attribute deletion works.

An attribute descriptor, or descriptor, is an object whose value depends
on whether it is obtained as a class attribute. If the object is obtained as a class
attribute, it calls __get__(self, obj, objtype) whose parameters are the
other object, if any, and class from which the object is being obtained, and which
returns the value of the object as an attribute. __set__(self, obj, value)

determines how the attribute is assigned. __delete__(self, obj) determines
how the attribute is deleted. __set_name__(self, cls, name) is called when
a descriptor is stored as a class attribute.

A property of a class is a descriptor decorated by @property that as-
sociates a name with values for each object. A no-argument method as a
property is its return value. Properties do not support assignment by default.
The original method is stored in the property attribute fget. The decora-
tor @propertyname.setter for some property name determines by the method
it decorates how the property supports assignment. @propertyname.deleter

does the same for deletion.
Method signatures should have type annotations and should have positional-

only, keyword-only, or other kinds of parameters as appropriate.
A dataclass, provided by the dataclasses module, is a class decorated

by @dataclasses.dataclass that stores values in fields. The fields are unini-
tialized and have type annotations. An object is initialized with values for

11

all fields as arguments. We can specify whether fields are mutable by mak-
ing the decorator a call with the argument frozen=True (then the dataclass
objects are hashable) and whether they can be initialized by keyword only by
kw_only=True. Equality is implemented automatically. Objects of a dataclass
are usually mutable and so unhashable.

__post_init__(self) executes right after __init__, if defined.

2.5 Abstract Base Classes

An abstract base class describes which methods, called abstract methods,
a derived class must have. The collections.abc module provides abstract
base classes. collections.abc.Sized describes a sized class. The numbers

module provides abstract base classes for numeric types. If a derived class does
not match a protocol, instantiation raises TypeError.

The principle of goose typing states that an object is an instance of a
protocol if the object implements the necessary methods of the protocol.

The abc module provides abstract base classes. abc.ABC is the base class for
abstract base classes. Abstract methods are decorated by abc.abstractmethod.
An abstract method raises NotImplementedError. An abstract property is an
abstract method decorated by @property.

A virtual subclass of an abstract base class is a class that is considered to
implement the abstract base class whether it actually does or not. The register
class method of an abstract base class takes a virtual subclass as an argument.
@abstractbaseclass.register decorator does the same thing.

12

3 Data Structures

3.1 The Python Data Model

The Python data model describes how objects can interact with each other,
especially by protocols relying on the presence of dunders.

• Objects are displayed in the shell by __repr__(self) method.

• Objects are initialized by __init__(self, args) method with optional
arguments.

• with statement calls __enter__(self) and __exit__(self, exc_type, exc_value, exc_traceback).

• Iteration calls __iter__(self) for an iterator that calls __next__(self).

• Object method calls become class method calls with the object as the first
argument.

An object is sized if it has a length len(object) returned by __len__(self).
Sized objects are falsy only for length 0. __bool__(self) has priority over
length to decide truthiness. An unsized object with no truthiness method is
truthy.

An object can be indexed by bracket notation object[index] if it has
__getitem__(self, index). Objects support assignment and deletion if they
have __setitem__(self, index, value) and __delitem__(self, index), re-
spectively.

An object supports the sequence protocol and is an iterable sequence
if it can be indexed. Sequences are usually sized. Iterable dunders have prior-
ity over sequence dunders. Iteration on a sequence ends when indexing raises
IndexError. __reversed__(self) returns an iterator and is usually used for
reverse iteration. __contains__(self, value) determines in keyword func-
tionality.

Slicing returns a subsequence. Slicing with bracket notation object[start:stop:step]
calls indexing with the index as a slice(start, stop, step) object, assigning
None to omitted indices. Slice indices can be obtained slice.start, slice.stop,
and slice.step. Slices are immutable. slice.indices(length) returns a tu-
ple of the indices with the stop index modified to make the slice span length,
with start 0 and step 1 if they are None in the slice. Slice assignment and
deletion are also supported.

An object is hashable if it has a hash integer that uniquely describes it,
given by hash(object) which calls __hash__(self), to be stored in a hash
table, and it is immutable. A simple hash implementation takes the hash of
the tuple of the identifying values of the object. If an object is immutable and
has __eq__, then it is automatically hashable without implementing __hash__.

The identity of an object id(object) is its unique memory address. Two
objects are identical a is b if they have the same identity. Two objects are
equal a == b if they have the same meaning as determined by __eq__(self, other)

13

which returns a Boolean value or NotImplemented of NotImplementedType,
and automatically compares identities if not implemented. Inequality a != b

negates equality by default, but can be defined by __ne__(self, other).

• If two objects are equivalent, then they have the same hash.

• If two objects have different hashes, then they are not equivalent.

Relational comparison compares objects by an ordering system. Lexi-
cographical ordering compares two lists by their respective elements, start-
ing from the first pair until the first unequal pair, or by length if all respec-
tive pairs are equal. Alphabetization is lexicographical. We can implement
less than __lt__(self, other), greater than __gt__(self, other), at most
__le__(self, other), and at least __ge__(self, other). Implementing one
direction of an inequality automatically implements the other direction, but im-
plementing a strict inequality does not automatically implement a non-strict
inequality.

When comparing two objects of different types, the method of the first object
is used if implemented, and otherwise the method of the second object is used.

The unary plus operator +object uses __pos__(self). The unary minus
operator -object uses __neg__(self). Other arithmetic operators are

• __add__(self, other) addition

• __sub__(self, other) subtraction

• __mul__(self, other) multiplication

• __truediv__(self, other) division

• __floordiv__(self, other) floor division

• __pow__(self, other) exponentiation

If an arithmetic operation does not exist or returns NotImplemented, the
operation raises TypeError or defers to a reflected operator method of the
second operand if it exists.

• __radd__(self, other) reverse addition

• __rsub__(self, other) reverse subtraction

• __rmul__(self, other) reverse multiplication

• __rtruediv__(self, other) reverse division

• __rfloordiv__(self, other) reverse floor division

• __rpow__(self, other) reverse exponentiation

14

An augmented arithmetic operator modifies an existing object. Aug-
menting an immutable object returns a copy. Augmented arithmetic is imple-
mented automatically based on arithmetic methods, or can defer to augmented
arithmetic methods.

• __iadd__(self, other) in-place addition

• __isub__(self, other) in-place subtraction

• __imul__(self, other) in-place multiplication

• __itruediv__(self, other) in-place division

• __ifloordiv__(self, other) in-place floor division

• __ipow__(self, other) in-place exponentiation

dict and set have a union operation a | b that returns the same type
object with the union of the values of each component.

• __or__(self, other)

• __ror__(self, other)

• __ior__(self, other)

3.2 Types

The type of a variable is its format. A data structure is a type that stores
multiple pieces of data. The type of a value can be obtained

type(value)

A value can be cast, or typecast, to a new_type

new_type(value)

A value can be cast, or typecast, to a different type as an argument of the
function whose name is the target type. For example, int(<value>) casts a
value to an int, and str(<value>) casts a value to a str.

3.3 Booleans

A bool is a Boolean value. The int 0 or any value of length 0 is False. Any
nonzero int or any value of length at least 1 is True.

15

Delimiters ()

Addition +

Subtraction -

Multiplication *

Float division /

Floor division //

Modulo %

Exponentiation **

Table 1: Arithmetic operators

Less than <

Greater than >

Equal to ==

Less than or equal to <=

Greater than or equal to >=

Not equal to !=

Table 2: Comparison operators

3.4 Numbers

An int is an integer. A float is a floating-point number. In arithmetic,
float dominates int.

The assignment operation

variable_1, ..., value_n = value_1, ..., value_n

sets the value_i of a variable_i. By the principle of duck typing, the type
of a variable is the type of its value. A variable without a value does not exist.
The names of variables should follow exactly one convention per project. Some
common Python conventions are PEP 8 and the Google Style Guide.

The math library provides mathematical functions including the following:

• Square root sqrt(<number>)

• Truncation trunc(<number>)

• Cosine cos(<number>)

• Sine sin(<number>)

• Tangent tan(<number>)

• Euler exponential exp(<number>)

• Conversion to degrees degrees(<angle in radians>)

• Conversion to radians radians(<angle in degrees>)

• Logarithm log(<exponential>, <base>)

16

3.5 Strings

A str is a string. A string literal is the definition of a str delimited by ""

or ’’ on one line, or """ and """ or ’’’ and ’’’ on several lines. A docstring
is a description of a class or method delimited by triple quotes, and is stored in
__doc__.

The concatenation operation + joins two str. String literals separated
only by whitespace are automatically concatenated. The repetition operation
* repeats a str an int number of times. Overloading is the multiple definition
of operators based on the types of their inputs.

The escape character \ immediately precedes special or escaped charac-
ters. A raw string is a string literal immediately preceded by r and does
not interpret special characters. A byte literal is a string literal immediately
preceded by b and is of type bytes.

Empty character New line
Backslash \

Single quotation ’

Double quotation "

New line n

Tab t

Table 3: Special and escaped characters

A character can be accessed

string[index]

by its index, from the start if positive and from the end if negative, in a string.
Using an invalid index raises IndexError. A substring can be sliced

string[start:end:step]

including the optional start index and excluding the optional end index, moving
by step. Using invalid indices raises no error. A str is immutable. The length
of a string is len(string).

The lowercase function <str>.lower() returns a string whose characters
are all lowercase. The uppercase function <str>.upper() returns a string
whose characters are all uppercase. The replacement function <str>.replace(<old>, <new>)

returns a string in which all instances of an old string are replaced with a new
string.

3.6 Iterables

A list is a list delimited by [] of other values separated by ,. A list supports
indexing, slicing, concatenation, and length. A list is mutable. An item can
be appended to a list

list.append(item)

17

An iterable is a data structure whose values can be accessed in sequence.
Some common iterables are str, range, list, dict, set, and tuple. list(iterable)
creates a list containing each element in an iterable. The map function
map(<function>, <iterables>) calls a function for each value in as many
iterables as arguments required by the function. max(iterable) returns the
maximum element of the iterable.

The values in an iterable can be assigned to individual variables by sequence
assignment

x_1, ..., x_n = iterable_of_length_n

The values in an iterable can be unpacked by *iterable for usage as individual
values, such as arguments to a function. The values in a mapping can be
dictionary unpacked by **mapping.

Due to hardware advancements, data structures usually prioritize perfor-
mance over storage efficiency. A list is ordered and mutable, and can contain
duplicates.

A dict is ordered by keys, with keys immutable and values mutable, and
cannot contain duplicates. A list of keys of a dictionary is given by

dictionary.keys()

The hash function hash(<value>) returns an integer representing an im-
mutable object. The hashes of unique identifiers of values can be used as keys
in a dict because the hashes of unique objects are unique.

The memory location of an immutable variable changes when the variable
value changes because the variable must point to a modified copy of the original
value. The memory location of a mutable variable does not change when the
variable value changes.

A set cannot contain duplicates or mutable elements.

3.7 Comprehensions

A comprehension is an expression that builds a data structure. A list com-
prehension builds a list based on a description of values.

[list_element

for element_1 in iterable_1 . . . for element_n in iterable_n

if condition_1 . . . if condition_m]

builds a list of list_element created from element_i of n iterable_i that
meet m optional condition_i.

A set comprehension builds a set with {} delimiters instead of []. Du-
plicate elements are not added to the set. Mutable elements raise TypeError

when trying to be added to the set. A set cannot contain duplicates or mutable
elements. set.add(element) adds element to a set.

Hashing creates a unique integer (hash value, or hash) that describes an
object. The hash determines where the object is stored. A hash table stores
hashes. Hashable objects must be immutable.

18

• __hash__(self) creates a hash for the object.

• __eq__(self, other) determines whether the object is equal to another
object.

A dictionary comprehension builds a dictionary with {} delimiters and
key: value instead of list_element. The keys must be hashable but the
values do not need to be hashable. Dictionaries can be looped through with
for key, value in dictionary.

A generator comprehension builds a generator with () delimiters. tuple(generator)
returns a tuple of the elements in generator.

A simple list comprehension using a range runs in O(n) time with O(n)
resource complexity. A range(start, stop, step) stores only start, stop,
step, and the last element returned, so a range has resource complexity O(1).
A list stores only the memory location of the first element, the length, the size
of a reference, and its references, so it has O(n) resource complexity. Adding n
elements to the end of a list creates n new memory location and runs in O(n)
time. Adding n elements each to the beginning of the list creates n new memory
locations and moves the existing elements toward the end at each addition, so
it runs in O(n2) time.

3.8 Databases

A database is a collection of data that is managed by programs over time.
A database management system, or DBMS, is software that manages a
database. A relational database explicitly relates data to each other. A
table is a data structure with rows and columns. A table stores one kind of
data. A row shows a datum. A column shows an attribute of the data. The
same attributes of different data are the same type. Rows should be unique.
Attributes should be scalars, in that they are in the smallest meaningful form.

A primary key is a subset of attributes that is unique for each datum,
specified explicitly. A DBMS can check that a primary key is unique and asso-
ciate a primary key with its datum to improve search complexity. An index is
an ancillary data structure that has two attributes: a primary key and a row
number. A primary key should be static so that it does not have to be changed
in all of its relevant tables and indices.

A relationship indicates how data are related to each other in a database.
Relationships use foreign keys, primary keys from other tables, as references.
A DBMS can enforce referential integrity to make sure foreign keys actually
exist as primary keys.

The cardinality of a relationship is how many elements are related. A one-
to-one relationship relates exactly one element from each table to each other,
ensuring each foreign key is unique. A one-to-many relationship relates one
element to many other elements but the other elements to only that one element,
not ensuring foreign keys are unique. A many-to-many relationship relates many
elements from each table to each other. Appropriate cardinality depends on the
problem, making another table to hold the relationships between keys.

19

3.9 SQLite

The module sqlite3 is an embedded DBMS. A database can be persistent or
temporary. sqlite3.connect(path) returns a database connection connection,
where path is a string either ":memory:" or a path to a database file. Execut-
ing a statement interacts with the database in a certain way. Statements are
written in Structured Query Language, or SQL.

The statement

CREATE TABLE table(

primary_key TYPE1 PRIMARY KEY,

attribute TYPE2

) STRICT;

creates a table table with primary key primary_key of type TYPE1 with at-
tribute attribute of type TYPE2, where STRICT means values must be of the
attribute type. Keywords are conventionally in upper case, whitespace has no
meaning, and statements are conventionally ended by a semicolon. A statement
statement as a string can be executed by connection.execute(statement),
which returns a Cursor that contains any data returned by the statement.

Metadata is data that describes the database. A query accesses data from
the database.

SELECT column FROM table;

returns the column attribute of every row in table table.

SELECT name FROM sqlite_schema;

returns the names of all tables in the database. Then cursor.fetchone() re-
turns one row as a tuple and moves the pointer to the next row, or None when
there are no more rows. We should close the cursor when finished cursor.close().

Appending WHERE condition affects only rows that meet the condition.
Equality and order are handled by =, <, >, <> (not equal). AND is the conjunction.
BETWEEN a AND b is the range between a and b. Appending ORBER BY attribute order

sorts the results by an attribute attribute or other feature such as the length
length(attribute) in the order either ASC or DESC.

INSERT INTO table (attribute1, ..., attributen)

VALUES (value1, ..., valuen);

inserts a row into table table with respective values valuei to attributes
attributei.

UPDATE table

SET operation

WHERE condition;

updates a row that meets condition by operation. Assignment is done by =.

20

DELETE

FROM table

WHERE condition;

removes the rows that meet condition.

DROP TABLE table;

deletes the table table.
Missing data are NULL and can be selected in a condition by attribute IS NULL

or attribute IS NOT NULL. In the creation of a table, appending NOT NULL to
an attribute prevents an attribute from being NULL. Appending CHECK (condition)

forces the value to meet the condition. UNIQUE forces each value to be unique in
the attribute. PRIMARY KEY is the last constraint. Constraints can be put on the
entire table by listing them like attributes UNIQUE (attribute1, ..., attributen),
CHECK (condition). Constraints control data integrity.

CREATE TABLE relationship(

key1 INTEGER NOT NULL,

key2 INTEGER NOT NULL,

PRIMARY KEY (key1, key2),

FOREIGN KEY key1 REFERENCES table1(key1),

FOREIGN KEY key2 REFERENCES table2(key2)

) STRICT;

makes a many-to-many relationship table with foreign keys, where (key1, key2)
uniquely identifies each row in the table. Queries can be written with joins that
combine rows from different tables by a join condition.

SELECT a.attribute

FROM tablea AS a

INNER JOIN tableb AS b ON b.key1 = a.key1

INNER JOIN tablec AS c ON c.key2 = a.key2

WHERE c.key2 = value;

An injection attack injects code into input other than what is intended to
execute. A parameterized statement has placeholders. connection.execute(statement, arguments)

inserts positional arguments as a tuple into statement which has ? as each
parameter, or named arguments as a dictionary into statement which has
: param as each param matching the dictionary keys.

A transaction is a sequence of statements that either executes entirely or
does not execute. connection.commit() commits all previous executed state-
ments as a transaction. Multiple transactions can read at once but writing
transactions are queued. After a timeout in the queue, a transaction raises
sqlite3.Error with sqlite3.Error.errorcode == sqlite3.SQLITE_BUSY.

21

4 Algorithms

4.1 Iteration

An iterable is an iterable object. An iterator facilitates iteration. iter(iterable)
returns an iterator for the iterable. next(iterator) returns the next value
from the iterator and raises StopIteration on no more elements. The iterable
protocol requires

• __iter__(self) returns the associated iterator

The iterator protocol requires

• __next__(self) returns the next element and raises StopIteration

• __iter__(self) returns the iterator

__repr__(self) determines how the object is represented in the shell, usually
<objecttype object at memorylocation>. print(iterator, sep=separator)

prints the elements with separator between them. Iterators have O(1) resource
complexity and O(n) time complexity.

A generator is a function that returns a sequence of results. A generator
function with parameters start, end is a function that returns a generator
and manages its iteration from start to end. yield value makes a generator
function and adds the value to the generator, stops the iteration, and directly
precedes the start of the next iteration. The call to a generator function only
returns an associated generator. Iteration on the generator executes the code
in the generator function and ends with the function. Returning a value raises
StopIteration with StopIteration.value == returnedvalue.

A generator comprehension with delimiters () returns a generator. Gen-
erators use lazy evaluation by only using resources when necessary. Gener-
ators have O(1) resource complexity and O(n) time complexity. An infinite
generator returns an infinite sequence. Infinite generators are usable because
of lazy evaluation. Nested generators can form a pipeline of curated results.
yield from generator iterates and returns every element in the generator.
Built-in iterating functions are

• map(func, iter) returns an iterator of the returned values on the ele-
ments

• filter(boolfunc, iter) returns an iterator of the truthy-evaluated el-
ements

• any(iter) returns true if any elements are truthy

• any(generatorcomp)

• all(iter) returns true if all elements are truthy

• all(generatorcomp)

22

• enumerate(iter) returns an iterator of tuples whose first element is an
index and whose second element is from the iterable

• zip(iter1, ..., itern) returns an iterator of tuples whose elements
are from the same index of each iterable

The itertools module provides

• islice(iter, <end | start, end>) returns the elements indicated by
the nonnegative indices

• count(start) returns an infinite sequence of consecutive integers from
the start index

• repeat(value) returns an infinite sequence of repetitions of the value

• chain(iter1, ..., itern) returns an iterator that concatenates the ar-
guments

4.2 Recursion

Loops always execute at least once. Iteration is repetition of code until a
condition is met. Recursion is the process of a function calling itself on a
smaller input in a recursive case until it reaches a base case. A runtime
stack is a set of pending executions.

A recursive method is a method that uses recursion. The default maxi-
mum stack space is 1024 calls, after which the function raises RecursionError
in stack overflow. Recursive methods can perform search, sort, parse, and
factorial algorithms. Recursion is limited in embedded systems software where
memory is limited.

Direct recursion is a function calling itself. Indirect recursion, or mu-
tual recursion, is a function calling another function that eventually calls the
original function. Single recursion is a function making at most one recur-
sive call. Single, direct recursion has O(n) time complexity and O(n) resource
complexity.

Memoization is remembering a previous result on certain arguments to a
function and using the stored result instead of recalculating it on other calls
with the same arguments. Memoization can be implemented by a list of length
the known total number of results on different arguments based on the initial
argument, where a nested memo function effects the recursive case by using
the stored value in the list or calculating and storing it if it does not yet exist.
Memoization can reduce time complexity for repetitive solutions.

An optimal substructure is a recursive case that always returns the same
value on given arguments, regardless of the broader problem. Dynamic pro-
gramming calculates the necessary memos at each step by iteration and takes
the final answer without recursion based on the memos. Dynamic programming
can avoid the stack limit for memoized solutions. Depending on the problem,
dynamic programming can reduce resource complexity for memoized solutions.

23

Tail call elimination, or tail call optimization or TCO, reduces re-
source complexity to O(1), but is not supported by Python. A tail call makes
the called function’s result the calling function’s result. In other words, the
calling function does no more work after the call. An accumulator is an extra
parameter that stores an accumulated value so that a recursive function can
use tail calls. Recursion with tail call elimination can be implemented by a
nested recursive function within the original recursive function that effects the
recursive case, called by the original function passing a hardcoded accumulator.

4.3 Searching

A list is composed of a reference to a memory block with references to elements,
an integer representing the size, and an integer representing the capacity of the
current memory block. Elements in a list are stored contiguously. Elements
can be accessed in constant time because the reference block can be found in
constant time and all references are the same size, so the product of the index
and the size of a reference added to the beginning of the reference block gives
the reference to the specified element.

Sequential search, or linear search, increments through each element
of a list in order until the specified element is found. The algorithm stores
only the current index, so resource complexity is O(1). The algorithm takes the
most time when the element is at the end or not present, and there is a constant
number of operations per element, so time complexity is O(n).

Binary search takes the relevant half of a sorted list repeatedly until the
specified element is found. v lists must be treated where there are n objects,

n = 2v

so the time complexity is O(log n). The algorithm must only store the first and
last indices of the current portion of the list and the middle index of that list,
so resource complexity is O(1).

24

5 Input and Output

5.1 Files

Input is data passed into an element. Input can be programmatically gener-
ated by elements of the program or externally generated by sources outside
the program, like users, files, databases, and the internet.

Output is data passed out of an element. Output can be programmat-
ically generated to elements of the program or externally generated to
vessels outside the program, like the shell.

The input function input([str]) prints an optional str and returns user
input from the shell. The print function print([str]) sends a str and a
new line to the shell.

The File class of the standard library allows a program to manipulate
files. A File is an iterable of the lines in the file. The open function
open(<file>, [mode], [buffer]) returns a File in a certain access mode
(default rt) that determines how the object can manipulate the file and with
a buffer size (default 1024) that determines how much data from the file is
available to be manipulated. The access modes are as follows:

• Read only r (fails if file does not exist)

• Overwrite w (creates file if file does not exist)

• Create x (fails if file exists)

• Append a (creates file if file does not exist)

• Binary b

• Text t

• Read and write +

A file must be opened before it is manipulated. A file must be closed by the
close function <file>.close() to save changes made by the program. The
with block with open(<file>, [mode], [buffer]) as <File>: creates a
File to be used within the block and does not require a close function.

The read functions <file>.read([buffer]), <file>.readline(), and
<file>.readlines() return a certain number of bits (default all), or a single
line, or all lines as a list, respectively, of an open file and move the pointer,
where a next read function would begin, to the character after the section that
has been read. The read functions return the empty string at the end of the
file. A file is also an iterator for line in file.

5.2 CSV Files

A comma-separated value file, or CSV file, contains tabular data separated
by commas and newlines. The csv library import csv parses and manipulates
CSV files.

25

A CSV file is opened in a block with open(<file>, <mode>, newline =

<newline character>) as <File>: with a row separator specified. Then the
read function without argument returns a 2-dimensional list that contains the
entire table by rows.

A CSV writer writer(<File>) allows the program to write data to the
file. The write row function writerow(<list>) writes a list as a row. A
CSV reader reader(<File>) is an iterable of the rows in the file as list

objects.

5.3 PathLib and Glob

A file identifier is a path and name. A file system structure determines the
formats of drives and paths.

The Path object from pathlib import Path can manipulate paths. The
path function Path(<str>) returns a Path whose format is independent of
the file system structure. Some Path methods are as follows:

• <Path>.exists() returns whether a Path refers to a real path on the
system.

• type(<Path>) returns the Path subclass associated with the file system
structure.

• <Path 1>/<Path 2> returns the concatenation of two paths.

• <Path>.is_file() returns whether the Path refers to a file.

• <Path>.is_dir() returns whether the Path refers to a directory.

• <Path>.open([mode]) returns a File in an access mode.

• list(<Path>.iterdir()) returns a list of Path objects in a directory.

• Path(<path>).glob(’*.’.<extension>) returns all Path objects in a
directory of a specific file type.

• Path.cwd() returns the current working directory.

• <Path>.rfind(<str>) returns the index of the first occurrence of a string
in the Path, starting from the right end.

5.4 Sockets

A socket is an endpoint of a bidirectional data stream. Data is received by
a socket in the order sent. Sockets can be used by processes, local programs,
remote programs, and remote machines.

The host is the device that another device connects to. An Internet Pro-
tocol, or IP address, is a unique machine identifier on a network. An IPv4
address contains four integers in 0-255 (8 bits, or 1 byte). An IPv6 address is an

26

alternate identifier. A hostname is a unique machine identifier. The loopback
address 127.0.0.1 refers to the current machine.

A port is a unique program identifier on a system. A port is an integer in
0-65535 (2 bytes). Ports are managed by the firewall, which blocks access to a
machine unless an allowed port is specified by the connection.

The type of a socket determines the rules of data transfer. Transmission
Control Protocol, or TCP, SOCK_STREAM connects a client and a server. A
TCP stream reliable because of the following properties:

• Detect and re-transmit lost data packets (three-way acknowledgements,
ACKS)

• Data received in order sent: sequence numbers for each packet

• Data integrity checks: confirm data received without errors

• Compare checksum: number of bytes in packet

Unit Datagram Protocol, or UDP, SOCK_DGRAM opens a continuous data
stream for use by clients and a server. UDP only performs a client-side checksum
comparison. UDP is faster than TCP because it does not maintain reliability.
TCP and UDP use Client-Server Architecture in which connections are
made between a server and a client.

The connection protocol determines how a socket identifies the machine
to connect to. A socket can use IP AF_INET or Unix Domain AP_UNIX.

Socket methods are as follows:

• socket(<protocol>, <type>) returns a socket.

• <socket>.bind((<host>, <port>)) server; associates connection infor-
mation with socket.

• <socket>.listen(<queue=0>) server; starts socket with maximum con-
nection request queue.

• <socket>.accept() server; returns list of client socket and client ad-
dress.

• <socket>.connect((<host>, <port>)) client; initiates connection.

• <socket>.getblocking() checks whether socket is blocking, or prevent-
ing execution until it receives data.

• <socket>.setblocking() toggles whether socket is blocking.

• <socket>.recv(<buffer>) receives message from socket.

• <socket>.send(<byte-like>) sends message from socket.

• <socket>.sendall(<byte-like>) sends data until all received or error
raised.

27

• <socket>.close() closes socket.

• <socket>.gethostname() returns hostname.

A byte-like object is a binary string. A str can be converted to a byte-like
object <str>.encode("ascii") or b<str>. A byte-like object can be converted
to a str <str>.decode("ascii").

In a graceful shutdown, the server closes the client socket before the client
closes its socket. A zombie is a process that remains open after completing its
tasks. An orphan is a process that remains open after its parent process has
closed.

A network-time diagram shows parallel timelines of events on the server
and the client.

5.5 Tkinter

A Graphical User Interface, or GUI, is a visually intuitive user interface.
The Tkinter library import tkinter as tk can be used to create a GUI.

The Tk function Tk() returns a window for the GUI. A widget is a com-
ponent of the interface. Some window methods are as follows:

• <window>.title(<str>) sets the window title.

• <window>.geometry(<str>) sets the dimensions of the window in pixels
"<width>x<height>".

• <window>.configure([options]) sets properties of the window.

– background = <str> sets the background color.

• <window>resizable(<int>, <int>) sets by 0 or 1 whether the width
and height, respectively, can be changed by the user.

The main loop <window>.mainloop() updates the window infinitely and
receives events. The quit function <window>.quit() ends the main loop.
The destroy function <window>.destroy() ends the main loop and closes
the window. An event and corresponding function can be bound to a widget
<widget>.bind(<event>, <function>). Some events are as follows:

• "<Enter>" the enter key.

• "<Leave>" the escape key.

• "<Button-1>" the left mouse button.

• "<Button-2>" the right mouse button.

• "<Button-3>" the middle mouse button.

• "<Double 1>" the left mouse button twice.

28

ATkinter variable <Var>() returns a variable that can be used by widgets.
The value of a variable can be read <Var>.get(). The value of a variable can be
set <Var>.set(<value>). Some Tkinter variables are BooleanVar, DoubleVar,
IntVar, and StringVar.

Some widgets are as follows:

• Label(<window>, [options]) text or image display.

• Button(<window>, [options]) clickable button.

• Entry(<window>, [options]) text entry field.

Some widgets in the additional library from tkinter import ttk are as fol-
lows:

• Combobox(<window>, <StringVar>, <list>, [options] dropdown se-
lection.

Some widget options are as follows:

• text = <str> text displayed.

• textvariable = <Var> where widget content is stored.

• font = <str> font and text color.

• height = <int> widget height.

• anchor = <str> cardinal text alignment.

• width = <int> widget width.

• command = <function> function called on click.

A lambda function, or anonymous function or throwaway function,
lambda: is a one-line function that cannot be called by name. Using a lambda
function in the command option prevents execution of the function on interpre-
tation of the widget.

A layout manager organizes widgets on the window. The pack manager
<widget>.pack([options]) stacks widgets vertically downward and has the
following options:

• expand make widget fill parent.

• fill make widget fill space.

• side = <str> widget alignment.

The grid manager <widget>.grid([options]) places widgets into a grid and
has the following options:

• column = <int> column from left.

29

• columnspan = <int> number of columns spanned.

• row = <int> row from top.

• rowspan = <int> number of rows spanned.

• ipadx = <int> horizontal padding between cell and widget.

• ipady = <int> vertical padding between cell and widget.

• padx = <int> horizontal padding between cells.

• pady = <int> vertical padding between cells.

• sticky = <str> cardinal widget alignment.

5.6 Application Programming Interface

The Hypertext Transfer Protocol, or HTTP facilitates internet communi-
cation. The HTTP library import http allows communication with a remote
machine through the internet. The client is the program and the server is a web
server.

Cookies are data stored persistently on the client side. The cookie jar is
the set of cookies. The request method determines how a client connects to
a server. Some requests are as follows:

• GET retrieve data.

• HEAD retrieve header.

• POST submit data.

• PUT replace data.

• DELETE delete data.

• CONNECT establish tunnel.

• OPTIONS change communication options.

• TRACE retrieve connection path.

• PATCH partially modify data.

The header is the information about the connection returned by the web
server. The header includes the date, server, content length, and content type.
A status code is a code returned in the header that describes the result of the
connection. Some status codes are as follows:

• 200 OK.

• 404 not found.

30

• 403 access denied.

A Uniform Resource Locator, or URL, import urllib is a unique
server identifier on the internet. The requests library import requests al-
lows a program to send requests to a URL. Requests can include a query string
?<param>=<value>&...that specifies what is requested with parameters.

The URL open function request.urlopen("http://" + <url> returns
the response to a query. The session from requests import Session con-
tains persistent data on the client side during a connection. The session ob-
ject Session() can contain keys, preferences, and a timeout. Some Session

methods are as follows:

• <Session>.get(<url>, params = <params>) returns the response to a
query where the parameters are a dict.

• <Session>.headers.update(<headers>) sets the headers used in a query
where the headers are a dict.

JavaScript Object Notation, or JSON, is a standardized data format.
The JSON library import json allows a program to parse JSON data. The
parse function <str>.json()[<tag>] returns a JSON string, optionally of
only the data under a specific tag.

Data Pretty Printer from pprint import pprint as pretp is a library
that improves the formatting of JSON strings. The pretty print function
pretp(<JSON>) prints to the shell a formatted JSON string.

An Application Programming Interface, or API, allows clients to re-
quest data from a web server using a query, and usually requires the client to
use a key. The key is usually passed as a header or a parameter.

31

	1 Program Structures
	1.1 The Interpreter
	1.2 Control Structures
	1.3 Functions
	1.4 Functional Programming
	1.5 Decorators
	1.6 Context Managers
	1.7 Exceptions
	1.8 Testing

	2 Object Oriented Programming
	2.1 Namespaces
	2.2 Classes
	2.3 Inheritance
	2.4 Class Design
	2.5 Abstract Base Classes

	3 Data Structures
	3.1 The Python Data Model
	3.2 Types
	3.3 Booleans
	3.4 Numbers
	3.5 Strings
	3.6 Iterables
	3.7 Comprehensions
	3.8 Databases
	3.9 SQLite

	4 Algorithms
	4.1 Iteration
	4.2 Recursion
	4.3 Searching

	5 Input and Output
	5.1 Files
	5.2 CSV Files
	5.3 PathLib and Glob
	5.4 Sockets
	5.5 Tkinter
	5.6 Application Programming Interface

